Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.946
Filtrar
1.
Neuropharmacology ; 251: 109931, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570067

RESUMO

The prospective involvement of the Wnt/ß-catenin signaling pathway in epilepsy, with the proposed therapeutic uses of its modulators, has been suggested; however, comprehensive knowledge in this regard is currently limited. Despite postulations about the pathway's significance and treatment potential, a systematic investigation is required to better understand its implications in chronic epilepsy. We investigated the role of key proteins like ß-catenin, GSK-3ß, and their modulators sulindac and 6-BIO, in Wnt/ß-catenin pathway during chronic phase of temporal lobe epilepsy. We also evaluated the role of modulators in seizure score, seizure frequency and neurobehavioral parameters in temporal lobe epilepsy. We developed status epilepticus model using lithium-pilocarpine. The assessment of neurobehavioral parameters was done followed by histopathological examination and immunohistochemistry staining of hippocampus as well as RT-qPCR and western blotting to analyse gene and protein expression. In SE rats, seizure score and frequency were significantly high compared to control rats, with notable changes in neurobehavioral parameters and neuronal damage observed in hippocampus. Our study also revealed a substantial upregulation of the Wnt/ß-catenin pathway in chronic epilepsy, as evidenced by gene and protein expression studies. Sulindac emerged as a potent modulator, reducing seizure score, frequency, neuronal damage, apoptosis, and downregulating the Wnt/ß-catenin pathway when compared to 6-BIO. Our findings emphasize the potential of GSK-3ß and ß-catenin as promising drug targets for chronic temporal lobe epilepsy, offering valuable treatment options for chronic epilepsy. The promising outcomes with sulindac encourages further exploration in clinical trials to assess its therapeutic potential.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Ratos , Animais , Via de Sinalização Wnt , Sulindaco/farmacologia , Sulindaco/uso terapêutico , beta Catenina/metabolismo , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Estudos Prospectivos
2.
Korean J Radiol ; 25(4): 374-383, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528695

RESUMO

OBJECTIVE: To evaluate the diagnostic performance and image quality of 1.5-mm slice thickness MRI with deep learning-based image reconstruction (1.5-mm MRI + DLR) compared to routine 3-mm slice thickness MRI (routine MRI) and 1.5-mm slice thickness MRI without DLR (1.5-mm MRI without DLR) for evaluating temporal lobe epilepsy (TLE). MATERIALS AND METHODS: This retrospective study included 117 MR image sets comprising 1.5-mm MRI + DLR, 1.5-mm MRI without DLR, and routine MRI from 117 consecutive patients (mean age, 41 years; 61 female; 34 patients with TLE and 83 without TLE). Two neuroradiologists evaluated the presence of hippocampal or temporal lobe lesions, volume loss, signal abnormalities, loss of internal structure of the hippocampus, and lesion conspicuity in the temporal lobe. Reference standards for TLE were independently constructed by neurologists using clinical and radiological findings. Subjective image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed. Performance in diagnosing TLE, lesion findings, and image quality were compared among the three protocols. RESULTS: The pooled sensitivity of 1.5-mm MRI + DLR (91.2%) for diagnosing TLE was higher than that of routine MRI (72.1%, P < 0.001). In the subgroup analysis, 1.5-mm MRI + DLR showed higher sensitivity for hippocampal lesions than routine MRI (92.7% vs. 75.0%, P = 0.001), with improved depiction of hippocampal T2 high signal intensity change (P = 0.016) and loss of internal structure (P < 0.001). However, the pooled specificity of 1.5-mm MRI + DLR (76.5%) was lower than that of routine MRI (89.2%, P = 0.004). Compared with 1.5-mm MRI without DLR, 1.5-mm MRI + DLR resulted in significantly improved pooled accuracy (91.2% vs. 73.1%, P = 0.010), image quality, SNR, and CNR (all, P < 0.001). CONCLUSION: The use of 1.5-mm MRI + DLR enhanced the performance of MRI in diagnosing TLE, particularly in hippocampal evaluation, because of improved depiction of hippocampal abnormalities and enhanced image quality.


Assuntos
Aprendizado Profundo , Epilepsia do Lobo Temporal , Humanos , Feminino , Adulto , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador
3.
Neurobiol Dis ; 194: 106482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522590

RESUMO

A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.


Assuntos
Epilepsia do Lobo Temporal , Animais , Epilepsia do Lobo Temporal/patologia , Núcleo Accumbens/metabolismo , Parvalbuminas/metabolismo , Convulsões/patologia , Hipocampo/patologia , Neurônios GABAérgicos/metabolismo , Ácido Caínico/toxicidade , Modelos Animais de Doenças
4.
PLoS One ; 19(3): e0295142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478498

RESUMO

Temporal lobe epilepsy (TLE) is a common form of medically intractable epilepsy. Although seizures originate in mesial temporal structures, there are widespread abnormalities of gray and white matter beyond the temporal lobes that negatively impact functional networks and cognition. Previous studies have focused either on the global impact on functional networks, or on the functional correlates of specific cognitive abilities. Here, we use a two-pronged approach to evaluate the link between whole-brain functional connectivity (FC) anomalies to overall cognitive performance, and how such abnormal connectivity alters the fronto-parietal brain regions involved in working memory (WMem), a cognitive disability often reported by TLE patients. We evaluated 31 TLE patients and 35 healthy subjects through extensive cognitive testing, resting-state functional magnetic resonance imaging (RS-fMRI), and task-based fMRI using Sternberg's task to evaluate WMem. As a group, TLE patients displayed cognitive abnormalities across different domains, although considerable within-group variability was identified. TLE patients showed disruptions of functional networks between and within the default mode network (DMN) and task-positive networks (TPN) resulting in associations with cognitive performance. Furthermore, during the WMem task, TLE patients showed abnormal activity of fronto-parietal regions that were associated with other forms of memory, and alterations of seed-based connectivity analyses. Our results show that different degrees of abnormal functional brain activity and connectivity are related to the severity of disabilities across cognitive spheres. Differential co-activation patterns between patients and healthy subjects suggest potential compensatory mechanisms to preserve adequate cognitive performance.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Memória de Curto Prazo/fisiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Cognição
5.
Ageing Res Rev ; 96: 102248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408490

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.


Assuntos
Epilepsia do Lobo Temporal , Ferroptose , Doenças Mitocondriais , Humanos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Convulsões/complicações , Convulsões/metabolismo , Convulsões/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia
6.
Epilepsia ; 65(4): 1092-1106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345348

RESUMO

OBJECTIVE: Epilepsy patients are often grouped together by clinical variables. Quantitative neuroimaging metrics can provide a data-driven alternative for grouping of patients. In this work, we leverage ultra-high-field 7-T structural magnetic resonance imaging (MRI) to characterize volumetric atrophy patterns across hippocampal subfields and thalamic nuclei in drug-resistant focal epilepsy. METHODS: Forty-two drug-resistant epilepsy patients and 13 controls with 7-T structural neuroimaging were included in this study. We measured hippocampal subfield and thalamic nuclei volumetry, and applied an unsupervised machine learning algorithm, Latent Dirichlet Allocation (LDA), to estimate atrophy patterns across the hippocampal subfields and thalamic nuclei of patients. We studied the association between predefined clinical groups and the estimated atrophy patterns. Additionally, we used hierarchical clustering on the LDA factors to group patients in a data-driven approach. RESULTS: In patients with mesial temporal sclerosis (MTS), we found a significant decrease in volume across all ipsilateral hippocampal subfields (false discovery rate-corrected p [pFDR] < .01) as well as in some ipsilateral (pFDR < .05) and contralateral (pFDR < .01) thalamic nuclei. In left temporal lobe epilepsy (L-TLE) we saw ipsilateral hippocampal and some bilateral thalamic atrophy (pFDR < .05), whereas in right temporal lobe epilepsy (R-TLE) extensive bilateral hippocampal and thalamic atrophy was observed (pFDR < .05). Atrophy factors demonstrated that our MTS cohort had two atrophy phenotypes: one that affected the ipsilateral hippocampus and one that affected the ipsilateral hippocampus and bilateral anterior thalamus. Atrophy factors demonstrated posterior thalamic atrophy in R-TLE, whereas an anterior thalamic atrophy pattern was more common in L-TLE. Finally, hierarchical clustering of atrophy patterns recapitulated clusters with homogeneous clinical properties. SIGNIFICANCE: Leveraging 7-T MRI, we demonstrate widespread hippocampal and thalamic atrophy in epilepsy. Through unsupervised machine learning, we demonstrate patterns of volumetric atrophy that vary depending on disease subtype. Incorporating these atrophy patterns into clinical practice could help better stratify patients to surgical treatments and specific device implantation strategies.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Lobo Temporal/patologia , Atrofia/patologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Esclerose/patologia
7.
Brain Res Bull ; 207: 110869, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184151

RESUMO

In temporal lobe epilepsy (TLE), the epileptogenic zones, such as the temporal lobe structure, could generate pathological high-frequency oscillations (pHFOs, 250-500 Hz) before the ictal period. These pHFOs have also been observed during the process of seizures in both TLE patients and animals, exhibiting a critical role as promising biomarkers for TLE seizures. TLE seizures could be modulated via regulating the neural excitability in epileptogenic zones, for that TLE is primarily associated with the excitation-inhibition imbalance. However, whether these kinds of modulations could also impact the pHFOs characteristics during TLE seizures is still unclear. For this purpose, we pharmaco-genetically inhibited the principal cells (PCs) in the mouse CA3 region and tracked the difference in the behavioral and electrophysiological features during LiCl-pilocarpine-induced TLE seizure between the hM4Di+CNO (experimental) mice and mCherry+CNO (control) mice. Delayed latency, decreased averaged duration, and reduced counts of the generalized seizure were observed in the experimental mice. Besides, the electrophysiological characteristics, such as the firing rate of PCs and the count of pHFO, exhibited significant decline in the CA3 and CA1 regions. During TLE seizure, there existed strong phase-coupling between pHFO and PCs spike timing in the control mice, while it was abolished in the experimental mice. In addition, we also found that the counts of pHFO were significantly associated with the behavioral features, indicating the close relationships within them. Collectively, our findings suggested that alterations in pHFO and the retardation of seizures may be attributed to disruptions in neuronal excitability, and the variations of electrophysiological features were related to seizure severity during TLE seizures. These results provide valuable insights into the role of pHFOs in TLE and shed light on the underlying mechanisms involved.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Camundongos , Animais , Epilepsia do Lobo Temporal/patologia , Convulsões , Lobo Temporal/patologia , Pilocarpina/efeitos adversos , Eletroencefalografia/métodos
8.
J Neurophysiol ; 131(2): 294-303, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230870

RESUMO

Both the hippocampal and striatal systems participate in motor sequence learning (MSL) in healthy subjects, and the prominent role of the hippocampal system in sleep-related consolidation has been demonstrated. However, some pathological states may change the functional dominance between these two systems in MSL consolidation. To better understand the functional performance within these two systems under the pathological condition of hippocampal impairment, we compared the functional differences after consolidation between patients with left medial temporal lobe epilepsy (LmTLE) and healthy control subjects (HCs). We assessed participants' performance on the finger-tapping task (FTT) during acquisition (on day 1) and after consolidation during sleep (on day 2). All participants underwent an MRI scan (T1 and resting state) before each FTT. We found that the LmTLE group showed performance deficits in offline consolidation compared to the HC group. The LmTLE group exhibited structural changes, such as decreased gray matter volume (GMV) in the left hippocampus and increased GMV in the right putamen (striatum). Our results also revealed that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the HC group, it was only evident in the striatum-related functional loop in the LmTLE group. Our findings indicated that LmTLE patients may rely more on the striatal system for offline consolidation because of structural impairments in the hippocampus. Additionally, this compensatory mechanism may not fully substitute for the role of the impaired hippocampus itself.NEW & NOTEWORTHY Motor sequence learning (MSL) relies on both the hippocampal and striatal systems, but whether functional performance is altered after MSL consolidation when the hippocampus is impaired remains unknown. Our results indicated that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the healthy control (HC) group, it was only evident in the striatum-related functional loop in the left medial temporal lobe epilepsy (LmTLE) group.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Corpo Estriado , Hipocampo/patologia , Sono , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos
9.
Epilepsia ; 65(1): 218-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032046

RESUMO

OBJECTIVE: Several studies have attributed epileptic activities in temporal lobe epilepsy (TLE) to the hippocampus; however, the participation of nonhippocampal neuronal networks in the development of TLE is often neglected. Here, we sought to understand how these nonhippocampal networks are involved in the pathology that is associated with TLE disease. METHODS: A kainic acid (KA) model of temporal lobe epilepsy was induced by injecting KA into dorsal hippocampus of C57BL/6J mice. Network activation after spontaneous seizure was assessed using c-Fos expression. Protocols to induce seizure using visual or auditory stimulation were developed, and seizure onset zone (SOZ) and frequency of epileptic spikes were evaluated using electrophysiology. The hippocampus was removed to assess seizure recurrence in the absence of hippocampus. RESULTS: Our results showed that cortical and hippocampal epileptic networks are activated during spontaneous seizures. Perturbation of these networks using visual or auditory stimulation readily precipitates seizures in TLE mice; the frequency of the light-induced or noise-induced seizures depends on the induction modality adopted during the induction period. Localization of SOZ revealed the existence of cortical and hippocampal SOZ in light-induced and noise-induced seizures, and the development of local and remote epileptic spikes in TLE occurs during the early stage of the disease. Importantly, we further discovered that removal of the hippocampi does not stop seizure activities in TLE mice, revealing that seizures in TLE mice can occur independent of the hippocampus. SIGNIFICANCE: This study has shown that the network pathology that evolves in TLE is not localized to the hippocampus; rather, remote brain areas are also recruited. The occurrence of light-induced or noise-induced seizures and epileptic discharges in epileptic mice is a consequence of the activation of nonhippocampal brain areas. This work therefore demonstrates the fundamental role of nonhippocampal epileptic networks in generating epileptic activities with or without the hippocampus in TLE disease.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Camundongos , Animais , Epilepsia do Lobo Temporal/patologia , Camundongos Endogâmicos C57BL , Convulsões/metabolismo , Hipocampo/patologia , Encéfalo/patologia , Epilepsia/metabolismo , Modelos Animais de Doenças , Ácido Caínico/farmacologia
10.
CNS Neurosci Ther ; 30(1): e14414, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37622409

RESUMO

BACKGROUND: Diffusion tensor imaging (DTI) studies have demonstrated white matter (WM) abnormalities in patients with temporal lobe epilepsy (TLE). However, alterations in the topological properties of the WM structural network in patients with TLE remain unclear. Graph theoretical analysis provides a new perspective for evaluating the connectivity of WM structural networks. METHODS: DTI was used to map the structural networks of 18 patients with TLE (10 males and 8 females) and 29 (17 males and 12 females) age- and gender-matched normal controls (NC). Graph theory was used to analyze the whole-brain networks and their topological properties between the two groups. Finally, partial correlation analyses were performed on the weighted network properties and clinical characteristics, namely, duration of epilepsy, verbal intelligence quotient (IQ), and performance IQ. RESULTS: Patients with TLE exhibited reduced global efficiency and increased characteristic path length. A total of 31 regions with nodal efficiency alterations were detected in the fractional anisotropy_ weighted network of the patients. Communication hubs, such as the middle temporal gyrus, right inferior temporal gyrus, left calcarine, and right superior parietal gyrus, were also differently distributed in the patients compared with the NC. Several node regions showed close relationships with duration of epilepsy, verbal IQ, and performance IQ. CONCLUSIONS: Our results demonstrate the disruption of the WM structural network in TLE patients. This study may contribute to the further understanding of the pathological mechanism of TLE.


Assuntos
Epilepsia do Lobo Temporal , Substância Branca , Masculino , Feminino , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lobo Temporal/patologia , Imageamento por Ressonância Magnética
11.
CNS Neurosci Ther ; 30(2): e14345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37424152

RESUMO

OBJECTIVE: Cognitive deficit is common in patients with temporal lobe epilepsy (TLE). Here, we aimed to investigate the modular architecture of functional networks associated with distinct cognitive states in TLE patients together with the role of the thalamus in modular networks. METHODS: Resting-state functional magnetic resonance imaging scans were acquired from 53 TLE patients and 37 matched healthy controls. All patients received the Montreal Cognitive Assessment test and accordingly were divided into TLE patients with normal cognition (TLE-CN, n = 35) and TLE patients with cognitive impairment (TLE-CI, n = 18) groups. The modular properties of functional networks were calculated and compared including global modularity Q, modular segregation index, intramodular connections, and intermodular connections. Thalamic subdivisions corresponding to the modular networks were generated by applying a 'winner-take-all' strategy before analyzing the modular properties (participation coefficient and within-module degree z-score) of each thalamic subdivision to assess the contribution of the thalamus to modular functional networks. Relationships between network properties and cognitive performance were then further explored. RESULTS: Both TLE-CN and TLE-CI patients showed lower global modularity, as well as lower modular segregation index values for the ventral attention network and the default mode network. However, different patterns of intramodular and intermodular connections existed for different cognitive states. In addition, both TLE-CN and TLE-CI patients exhibited anomalous modular properties of functional thalamic subdivisions, with TLE-CI patients presenting a broader range of abnormalities. Cognitive performance in TLE-CI patients was not related to the modular properties of functional network but rather to the modular properties of functional thalamic subdivisions. CONCLUSIONS: The thalamus plays a prominent role in modular networks and potentially represents a key neural mechanism underlying cognitive impairment in TLE.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Tálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/patologia , Transtornos Cognitivos/patologia
12.
Hippocampus ; 34(2): 58-72, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049972

RESUMO

Numerous epilepsy-related genes have been identified in recent decades by unbiased genome-wide screens. However, the available druggable targets for temporal lobe epilepsy (TLE) remain limited. Furthermore, a substantial pool of candidate genes potentially applicable to TLE therapy awaits further validation. In this study, we reveal the significant role of KCNQ2 and KCNQ3, two M-type potassium channel genes, in the onset of seizures in TLE. Our investigation began with a quantitative analysis of two publicly available TLE patient databases to establish a correlation between seizure onset and the downregulated expression of KCNQ2/3. We then replicated these pathological changes in a pilocarpine seizure mouse model and observed a decrease in spike frequency adaptation due to the affected M-currents in dentate gyrus granule neurons. In addition, we performed a small-scale simulation of the dentate gyrus network and confirmed that the impaired spike frequency adaptation of granule cells facilitated epileptiform activity throughout the network. This, in turn, resulted in prolonged seizure duration and reduced interictal intervals. Our findings shed light on an underlying mechanism contributing to ictogenesis in the TLE hippocampus and suggest a promising target for the development of antiepileptic drugs.


Assuntos
Epilepsia do Lobo Temporal , Camundongos , Animais , Humanos , Epilepsia do Lobo Temporal/patologia , Giro Denteado/metabolismo , Convulsões/induzido quimicamente , Convulsões/patologia , Hipocampo/metabolismo , Neurônios/fisiologia , Canal de Potássio KCNQ2/genética
13.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895080

RESUMO

Temporal lobe epilepsy is a common, chronic disorder with spontaneous seizures that is often refractory to drug therapy. A potential cause of temporal lobe epilepsy is primary brain injury, making prevention of epileptogenesis after the initial event an optimal method of treatment. Despite this, no preventive therapy for epilepsy is currently available. The purpose of this study was to evaluate the effects of anakinra, lamotrigine, and their combination on epileptogenesis using the rat lithium-pilocarpine model of temporal lobe epilepsy. The study showed that there was no significant difference in the number and duration of seizures between treated and untreated animals. However, the severity of seizures was significantly reduced after treatment. Anakinra and lamotrigine, alone or in combination, significantly reduced neuronal loss in the CA1 hippocampus compared to the control group. However, the drugs administered alone were found to be more effective in preventing neuron loss in the hippocampal CA3 field compared to combination treatment. The treatment alleviated the impairments in activity level, exploratory behavior, and anxiety but had a relatively weak effect on TLE-induced impairments in social behavior and memory. The efficacy of the combination treatment did not differ from that of anakinra and lamotrigine monotherapy. These findings suggest that anakinra and lamotrigine, either alone or in combination, may be clinically useful in preventing the development of histopathological and behavioral abnormalities associated with epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Ratos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Pilocarpina/efeitos adversos , Lamotrigina/efeitos adversos , Lítio/efeitos adversos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Anticonvulsivantes/efeitos adversos , Convulsões/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
14.
Cell Stem Cell ; 30(10): 1331-1350.e11, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802038

RESUMO

Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy. One-third of patients have drug-refractory seizures and are left with suboptimal therapeutic options such as brain tissue-destructive surgery. Here, we report the development and characterization of a cell therapy alternative for drug-resistant MTLE, which is derived from a human embryonic stem cell line and comprises cryopreserved, post-mitotic, medial ganglionic eminence (MGE) pallial-type GABAergic interneurons. Single-dose intrahippocampal delivery of the interneurons in a mouse model of chronic MTLE resulted in consistent mesiotemporal seizure suppression, with most animals becoming seizure-free and surviving longer. The grafted interneurons dispersed locally, functionally integrated, persisted long term, and significantly reduced dentate granule cell dispersion, a pathological hallmark of MTLE. These disease-modifying effects were dose-dependent, with a broad therapeutic range. No adverse effects were observed. These findings support an ongoing phase 1/2 clinical trial (NCT05135091) for drug-resistant MTLE.


Assuntos
Epilepsia do Lobo Temporal , Hipocampo , Camundongos , Animais , Humanos , Hipocampo/patologia , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Convulsões/patologia , Convulsões/cirurgia , Interneurônios/fisiologia , Encéfalo/patologia
15.
Neuropathol Appl Neurobiol ; 49(5): e12937, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740653

RESUMO

OBJECTIVE: Mesial Temporal Lobe Epilepsy-associated Hippocampal Sclerosis (MTLE-HS) is a syndrome associated with various aetiologies. We previously identified CD34-positive extravascular stellate cells (CD34+ cells) possibly related to BRAFV600E oncogenic variant in a subset of MTLE-HS. We aimed to identify the BRAFV600E oncogenic variants and characterise the CD34+ cells. METHODS: We analysed BRAFV600E oncogenic variant by digital droplet Polymerase Chain Reaction in 53 MTLE-HS samples (25 with CD34+ cells) and nine non-expansive neocortical lesions resected during epilepsy surgery (five with CD34+ cells). Ex vivo multi-electrode array recording, immunolabelling, methylation microarray and single nuclei RNAseq were performed on BRAFwildtype MTLE-HS and BRAFV600E mutant non-expansive lesion of hippocampus and/or neocortex. RESULTS: We identified a BRAFV600E oncogenic variant in five MTLE-HS samples with CD34+ cells (19%) and in five neocortical samples with CD34+ cells (100%). Single nuclei RNAseq of resected samples revealed two unique clusters of abnormal cells (including CD34+ cells) associated with senescence and oligodendrocyte development in both hippocampal and neocortical BRAFV600E mutant samples. The co-expression of the oncogene-induced senescence marker p16INK4A and the outer subventricular zone radial glia progenitor marker HOPX in CD34+ cells was confirmed by multiplex immunostaining. Pseudotime analysis showed that abnormal cells share a common lineage from progenitors to myelinating oligodendrocytes. Epilepsy surgery led to seizure freedom in eight of the 10 patients with BRAF mutant lesions. INTERPRETATION: BRAFV600E underlies a subset of MTLE-HS and epileptogenic non-expansive neocortical focal lesions. Detection of the oncogenic variant may help diagnosis and open perspectives for targeted therapies.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Humanos , Epilepsia do Lobo Temporal/patologia , Neocórtex/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Hipocampo/patologia , Epilepsias Parciais/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/patologia , Epilepsia/patologia , Esclerose/patologia , Imageamento por Ressonância Magnética
16.
Hippocampus ; 33(11): 1189-1196, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587770

RESUMO

Mesial temporal lobe epilepsy is one of the most common causes of refractory epilepsy worldwide. A good percentage of patients do not have detectable hippocampal atrophy on magnetic resonance imaging (MRI). The objective of this study is to evaluate whether T2 relaxometry can identify hippocampal pathology and lateralize the epileptic focus in patients with intractable temporal lobe epilepsy (TLE). T2 relaxometry can also be used to correlate the clinical severity of the disease with the relaxometry readings in those who have hippocampal atrophy as well as those who do not. Thirty two patients having clinical and electrophysiological features of TLE were enrolled and a MRI brain with T2 relaxometry was done. Hippocampal T2 relaxometry values were calculated in the head, body, and tail of the hippocampus and average T2 relaxometry values were calculated, and a comparison was done with the controls. For patients with unilateral involvement, the contralateral side was taken as control and in cases of bilateral involvement, controls were identified from normal subjects. T2 relaxometry is found to be superior to MR visual analysis in the early detection of cases of hippocampal sclerosis where there is no atrophy on visual analysis. Nine out of 32 patients (28%) were normal on MR visual analysis; however, showed increased values on T2 relaxometry, correlating with clinical and electrophysiological diagnosis. The rest of the patients with hippocampal atrophy showed a correlation of T2 relaxometry values with the degree of atrophy. The hippocampal T2 measurement is thus more sensitive and specific. The study was clinically significant (p < .0001). There was a mild female predilection of the disease and there was no significant correlation with comorbidities. There was a strong positive correlation with patients having a history of febrile seizures in childhood. T2 relaxometry may accurately lateralize the majority of patients with persistent TLE and offers evidence of hippocampus injury in those patients who do not show evidence of atrophy on MRI and also the T2 relaxometry values correlated with the degree of atrophy. Early identification of hippocampal sclerosis is crucial for prompt management which offers better outcomes.


Assuntos
Epilepsia do Lobo Temporal , Esclerose Hipocampal , Doenças Neurodegenerativas , Humanos , Feminino , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Estudos Transversais , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/patologia , Atrofia , Esclerose/diagnóstico por imagem , Esclerose/patologia
17.
Eur J Neurol ; 30(10): 2999-3007, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402214

RESUMO

BACKGROUND: Cerebrovascular disease (CVD) is a major contributor to epilepsy; however, patients with epilepsy also have a significantly increased risk of stroke. The way in which epilepsy contributes to the increased risk of stroke is still uncertain and is ill-characterized in neuropathological studies. A neuropathological characterization of cerebral small vessel disease (cSVD) in patients with chronic epilepsy was performed. METHODS: Thirty-three patients with refractory epilepsy and hippocampal sclerosis (HS) submitted to epilepsy surgery from a reference center were selected between 2010 and 2020 and compared with 19 autopsy controls. Five randomly selected arterioles from each patient were analyzed using a previously validated scale for cSVD. The presence of CVD disease imaging markers in pre-surgical brain magnetic resonance imaging (MRI) was studied. RESULTS: There were no differences in age (43.8 vs. 41.6 years; p = 0.547) or gender distribution (female gender 60.6% vs. male gender 52.6%; p = 0.575) between groups. Most CVD findings in brain MRI were mild. Patients had a mean time between the epilepsy onset and surgery of 26 ± 14.7 years and were medicated with a median number of three antiseizure medication (ASMs) [IQR 2-3]. Patients had higher median scores in arteriolosclerosis (3 vs. 1; p < 0.0001), microhemorrhages (4 vs. 1; p < 0.0001) and total score value (12 vs. 8.9; p = 0.031) in comparison with controls. No correlation was found between age, number of years until surgery, number of ASMs or cumulative defined daily dosage of ASM. CONCLUSION: The present study provides evidence supporting the increased burden of cSVD in the neuropathological samples of patients with chronic epilepsy.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Transtornos Cerebrovasculares , Epilepsia do Lobo Temporal , Epilepsia , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Estudos de Casos e Controles , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Transtornos Cerebrovasculares/patologia , Epilepsia/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose/patologia , Acidente Vascular Cerebral/patologia , Adulto
18.
Neurosci Bull ; 39(11): 1683-1702, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37523099

RESUMO

Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.


Assuntos
Epilepsia do Lobo Temporal , Doença de Parkinson , Camundongos , Animais , Epilepsia do Lobo Temporal/patologia , Parvalbuminas/metabolismo , Doença de Parkinson/patologia , Neurônios/metabolismo , Interneurônios/fisiologia , Modelos Animais de Doenças , Encéfalo/patologia
19.
Epilepsy Behav ; 145: 109342, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422935

RESUMO

Cognitive disruption is a debilitating comorbidity in Temporal Lobe Epilepsy (TLE). Despite recent advances, the amygdala is often neglected in studies that explore cognition in TLE. Amygdala subnuclei are differently engaged in TLE with hippocampal sclerosis (TLE-HS) compared to non-lesional TLE (TLE-MRIneg), with predominant atrophy in the first and increased volume in the latter. Herein, we aim to explore the relationship between the volumes of the amygdala and its substructures with respect to cognitive performances in a population of left-lateralized TLE with and without HS. Twenty-nine TLEs were recruited (14 TLE-HS; 15 TLE-MRIneg). After investigating the differences in the subcortical amygdalae and hippocampal volumes compared to a matched healthy control population, we explored the associations between the subnuclei of the amygdala and the hippocampal subfields with the cognitive scores in TLE patients, according to their etiology. In TLE-HS, a reduced volume of the basolateral and cortical amygdala complexes joined with whole hippocampal atrophy, was related to poorer scores in verbal memory tasks, while in TLE-MRIneg, poorer performances in attention and processing speed tasks were associated with a generalized amygdala enlargement, particularly of the basolateral and central complexes. The present findings extend our knowledge of amygdala involvement in cognition and suggest structural amygdala abnormalities as useful disease biomarkers in TLE.


Assuntos
Epilepsia do Lobo Temporal , Esclerose Hipocampal , Humanos , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Imageamento por Ressonância Magnética/métodos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Cognição , Atrofia/patologia , Esclerose/patologia
20.
Neuropathol Appl Neurobiol ; 49(4): e12926, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37483117

RESUMO

AIMS: Mesial temporal lobe epilepsy without hippocampal sclerosis (no-HS MTLE) refers to those MTLE patients who have neither magnetic resonance imaging (MRI) lesions nor definite pathological evidence of hippocampal sclerosis. They usually have resistance to antiepileptic drugs, difficulties in precise seizure location and poor surgical outcomes. Adenosine is a neuroprotective neuromodulator that acts as a seizure terminator in the brain. The role of adenosine in no-HS MTLE is still unclear. Further research to explore the aetiology and pathogenesis of no-HS MTLE may help to find new therapeutic targets. METHODS: In surgically resected hippocampal specimens, we examined the maladaptive changes of the adenosine system of patients with no-HS MTLE. In order to better understand the dysregulation of the adenosine pathway in no-HS MTLE, we developed a rat model based on the induction of focal cortical lesions through a prenatal freeze injury. RESULTS: We first examined the adenosine system in no-HS MTLE patients who lack hippocampal neuronal loss and found ectopic expression of the astrocytic adenosine metabolising enzyme adenosine kinase (ADK) in hippocampal pyramidal neurons, as well as downregulation of neuronal A1 receptors (A1 Rs) in the hippocampus. In the no-HS MTLE model rats, the transition of ADK from neuronal expression to an adult pattern of glial expression in the hippocampus was significantly delayed. CONCLUSIONS: Ectopic expression of neuronal ADK might be a pathological hallmark of no-HS MTLE. Maladaptive changes in adenosine metabolism might be a novel target for therapeutic intervention in no-HS MTLE.


Assuntos
Epilepsia do Lobo Temporal , Esclerose Hipocampal , Animais , Ratos , Epilepsia do Lobo Temporal/patologia , Adenosina Quinase/metabolismo , Expressão Ectópica do Gene , Convulsões/patologia , Imageamento por Ressonância Magnética , Hipocampo/patologia , Biomarcadores/metabolismo , Esclerose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...